The author would like to thank Dr R.Kinas for a sample of the compound and J. Perka for technical assistance with the computing. This research was supported by project MR.I-9 from the Polish Academy of Sciences.

References

Ahmed, F. R., Singh, P. \& Barnes, W. H. (1969). Acta Cryst. B25, 316-328.
Bartczak, T. J., Christensen, A., Kinas, R. \& Stec, W. J. (1975). Cryst. Struct. Commun. 4, 701-704.

Bartczak, T. J., Christensen, A., Kinas, R. \& Stec, W. J. (1976). Cryst. Struct. Commun. 5, 21-24.

Beineke, T. A. (1969). Acta Cryst. B25, 413-419.
Bukowska-Strzyżewska, M., Michalski, J., Mlotkowska, B. \& Skoweranda, J. (1976). Acta Cryst. B32, 2605-2608.
Cameron, T. S., Galdecki, Z. \& KarolakWojciechowska, J. (1976). Acta Cryst. B32, 492-496.
Cameron, T. S., Prout, C. K. \& Howlett, K. D. (1975a). Acta Cryst. B31, 2333-2335.
Cameron, T. S., Prout, C. K. \& Howlett, K. D. (1975b). Acta Cryst. B31, 2331-2333.
Cook, D. S. \& White, R. F. M. (1976). J. Chem. Soc. Dalton Trans. pp. 2212-2215.
Corbridge, D. E. C. (1974). The Structural Chemistry of Phosphorus. Amsterdam: Elsevier.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A.24, 390-397.
Drew, G. B. \& Rodgers, J. (1972). Acta Cryst. B28, 924-929.

Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, pp. 16-22. New York: Plenum.
Engelhardt, U. \& Hartl, H. (1975). Acta Cryst. B31, 2098-2105.
Galdecki, Z. \& Glówka, M. L. (1979). Pol. J. Chem. 53, 1397-1398.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Grand, A. \& Robert, J. B. (1975). Acta Cryst. B31, 2502-2503.
Grand, A. \& Robert, J. B. (1978). Acta Cryst. B34, 199-204.
Grand, A., Robert, J. B. \& Filhol, A. F. (1977). Acta Cryst. B33, 1526-1529.
Ibrahim, E. H. M., Shaw, R. A., Smith, B. C., Thakur, C. P., Woods, M., Bullen, G. J., Rutherford, J. S., Tucker, P. A., Cameron, T. S., Howlett, K. D. \& Prout, C. K. (1971). Phosphorus, 1, 153-155.
Killean, R. C. G., Lawrence, J. L. \& Magennis, I. M. (1971). Acta Cryst. B27, 189-192.

Mazhar-ul-Haque, Caughlan, C. N., Hargis, J. H. \& Bentrude, W. G. (1970). J. Chem. Soc. A, pp. 1786-1791.
Peterson, M. B. \& Wagner, A. J. (1973). J. Chem. Soc. Dalton Trans. pp. 106-111.
Saenger, W. \& Mikolajczyk, M. (1973). Chem. Ber. 106, 3519-3523.
Silver, L. \& Rudman, R. (1972). Acta Cryst. B28, 574-578.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Wagner, R., Jensen, W., Wadsworth, W. \& Johnson, Q. (1973). Acta Cryst. B29, 2160-2163.

Acta Cryst. (1980). B36, 2809-2812

The Structure of the Precursor of Phosphafuranoses: 2-Hydroxy-5-hydroxymethyl-1-phenylphospholane 1-Oxide*

By Z. Galdecki and M. L. Glówka
Institute of General Chemistry, Technical University of Łódź, 36 Żwirki, 90-924 Łódź, Poland

(Received 3 July 1979; accepted 27 June 1980)

Abstract

C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}, M_{r}=226 \cdot 2\), triclinic, $P \overline{1}, a=$ 8.711 (3), $\quad b=8.014$ (3), $\quad c=8.782$ (3) $\AA, \quad \alpha=$ 94.74 (4), $\beta=115.11(5), \quad \gamma=99.97(4)^{\circ}, \quad V=$ $538.3 \AA^{3}, D_{m}=1.383$ (flotation), $D_{x}=1.395 \mathrm{Mg} \mathrm{m}^{-3}$, $Z=2, \mu(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=2 \cdot 12 \mathrm{~mm}^{-1}, F(000)=240$. The crystal structure of one of the two isomeric products formed in the intramolecular cyclization of the respec-

^[* The atom-numbering scheme adopted in the paper does not correspond to the numbering in the title which is in agreement with the IUPAC convention.]

0567-7408/80/112809-04\$01.00
tive secondary δ-oxoalkylphosphine oxide has been determined from 1354 intensities collected on a four-circle diffractometer with copper radiation. The structure was solved by direct methods and refined by least squares to a final R of 0.042 . The molecules are linked into chains along [010] by hydrogen bonds with $\mathrm{O} \cdots \mathrm{O}$ distances of $2.74 \AA$.

Introduction. It has been shown that intramolecular cyclization of secondary phosphine oxides containing a © 1980 International Union of Crystallography
δ-oxoalkyl group leads to formation of 2 -hydroxyphospholane 1 -oxide systems (Musierowicz, Waszkuć \& Krawczyk, 1980).

The compounds are very interesting not only from the point of view of their chemistry but also because of their potential biological activity (Takayanagi, Seo, Yamashita, Yoshida, Ogata \& Inokawa, 1978). The two isomeric 2-hydroxy-5-hydroxymethyl-1-phenylphospholane 1 -oxides obtained in the cyclization can be considered precursors of the corresponding phosphafuranoses. The same compound has been synthesized in a different way by Yamashita, Nakatsukasa, Yoshikane, Yoshida, Ogata \& Inokawa (1977). In both the cases there were insufficient data for the determination of the relative configurations of the isomers.

The predominant isomer of 2-hydroxy-5-hydroxy-methyl-1 phenylphospholane 1 -oxide (I) was separated in a crystalline form and the determination of its crystal structure was attempted. Colourless, prismatic crystals suitable for X-ray studies were kindly provided by Dr H. W. Krawczyk of the Institute of Organic Chemistry. An irregular crystal was used for the data collection. Intensitics were recorded on a Syntex $P 2$, diffractometer using copper radiation. The total number of independent reflections measured was $1354 ; 1304$ of them had $F_{\prime \prime}: 3 \sigma\left(F_{\prime \prime}\right)$. Intensities were not corrected for absorption.

The structure of the compound has been solved by direct methods (MULTAN; Germain, Main \& Woolfson, 1971). The E map based on $400 E$ - $1 \cdot 1$ revealed the positions of all the heavy atoms but one. Full-matrix least-squares refinement resulted in an R of

Table 1. Atomic parameters (positional $\times 10^{4}$) for the non-hydrogen atoms

	x	${ }^{\prime}$	z	$B_{\text {isp }}\left(\AA^{2}\right)$
P	2978 (1)	7617 (1)	2994 (1)	2.5 (1)
$\mathrm{O}(1)$	4677 (3)	7888 (3)	4546 (3)	$3 \cdot 2$ (1)
$\mathrm{O}(2)$	3188 (3)	3691 (3)	3015 (3)	4.3 (1)
$\mathrm{O}(5)$	2250 (3)	9911 (3)	4817 (3)	$3 \cdot 7$ (1)
C(1)	2218 (4)	4359 (4)	3754 (4)	$3 \cdot 3$ (1)
C(2)	1386 (4)	5659 (4)	2722 (4)	3.0 (1)
C(3)	57 (4)	6313 (4)	3183 (5)	3.9 (1)
C(4)	-172 (4)	8000 (4)	2482 (5)	$4 \cdot 2$ (1)
C(5)	1635 (4)	9150 (4)	3101 (4)	3.1(1)
$\mathrm{C}(11)$	3270 (4)	7686 (4)	1095 (4)	2.8 (1)
C(12)	2146 (4)	8275 (4)	-304 (4)	$3 \cdot 8$ (1)
C(13)	2464 (5)	8360 (5)	-1715 (4)	$4 \cdot 2$ (1)
C(14)	3894 (5)	7883 (4)	1728 (4)	4.0 (1)
C(15)	4990 (5)	7256 (5)	-374 (5)	$4 \cdot 4$ (2)
C(16)	4694 (4)	7186 (5)	1054 (4)	$4 \cdot 0$ (1)

Table 2. Atomic parameters ($\times 10^{3}$) and bond lengths (\AA) for the hydrogen atoms

	x	${ }^{\prime}$	z	$B_{\text {is,o }}\left(\dot{\AA}^{2}\right)$	Bonded to	Bond length
H1()2)	398 (5)	324 (6)	380 (5)	5.0 (1.2)	$\mathrm{O}(2)$	0.90 (4)
H(05)	335 (4)	1079 (5)	527 (4)	2.9 (0.8)	$\mathrm{O}(5)$	0.98 (4)
H(1) ${ }^{\text {(1) }}$	306 (3)	498 (4)	510 (3)	0.7 (0.6)	C(1)	1.10 (3)
H(1)	128 (4)	340 (4)	373 (4)	1.3 (0.7)	C(1)	1.01 (3)
H(12)	102 (4)	852 (4)	-33 (4)	1.4 (0.7)	C(12)	1.02 (4)
H(13)	171 (4)	886 (4)	-268(4)	2.7 (0.8)	C(13)	1.00 (4)
H(14)	403 (4)	795 (4)	.-266 (4)	$2 \cdot 3$ (0.8)	C(14)	0.88 (4)
11(15)	611 (4)	691 (4)	-33(4)	2.5 (0.8)	C(15)	1.05 (4)
H(16)	548 (4)	676 (4)	197 (4)	2.1 (0.7)	C(16)	0.95 (3)
H(2)	78 (4)	513 (4)	144 (4)	0.9 (0.6)	C(2)	1.03 (3)
H(3])	45 (4)	650 (4)	435 (4)	$2 \cdot 1$ (0.8)	C(3)	0.92 (3)
H(32)	116 (5)	547 (5)	271 (5)	4.0 (0.9)	C(3)	1.04 (4)
H(4)	-89 (4)	853 (4)	291 (4)	2.0 (0.7)	C(4)	0.99 (4)
H(42)	81 (4)	785 (4)	113 (4)	2.0 (0.8)	C(4)	1.06 (3)
H(5)	165 (4)	1008 (4)	233 (4)	0.7 (0.6)	C(5)	1.05 (3)

0.078 after five cycles of calculations with isotropic and two successive cycles with anisotropic temperature factors. At this stage of refinement the H atoms were found from the difference Fourier map and included in the block-diagonal refinement of all atoms. The final R factor after six cycles of calculations was $0.042\left(R_{w}=0.051\right)$. The weights were $w^{-2}=\sigma(F)$. Neutral-atom scattering factors for P, O and C were those given by Doyle \& Turner (1968) and those from International Tables for X-ray Crystallography (1962) for H. All calculations were performed using the XRAY 70 system of Stewart, Kundell \& Baldwin (1970) on a RIAD 32 computer except for MULTAN, for which an ODRA 1305 computer was used.

Final atomic parameters together with their standard deviations as obtained from the refinement are given in Tables 1 and 2.*

Discussion. Bond lengths and valency angles found in the structure are close to those reported earlier |Gałdecki \& Głowka (hereinafter GG), 1980al in 2-hydroxy-2-methyl-1-phenylphospholane 1-oxide (II), if differences in chemical formulae are taken into

Fig. 1. (I) and (II) showing torsion angles $\left({ }^{\circ}\right)$ and the numbering of atoms.

Table 3. Comparison of bond lengths (\AA) and valency angles $\left({ }^{\circ}\right)$ in phospholane rings

Although the only difference between the substituents in (I) and (II) is the presence of the hydroxymethyl group in (I) instead of the methyl group in (II), because of the different substitution positions the numbering used here does not correspond exactly with that shown in Fig. 1.

	(II) (Galdecki \& Glowka, 1980a)	(I) (present work)
$\mathrm{P}-\mathrm{C}(2)$	1.812 (4)	1.829 (3)
$\mathrm{P}-\mathrm{C}(5)$	1.851 (4)	1.859 (4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.509 (5)	1.515 (5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.523 (7)	1.534 (6)
C(3)-C(4)	1.530 (5)	1.540 (5)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.542 (8)	1.520 (5)
$\mathrm{C}(5)-\mathrm{O}(5)$	1.429 (4)	1.407 (4)
$\mathrm{P}-\mathrm{C}(2)-\mathrm{C}(1)$	116.1 (4)	112.6 (2)
$\mathrm{P}-\mathrm{C}(2)-\mathrm{C}(3)$	$106 \cdot 3$ (3)	104.1 (2)
$\mathrm{P}-\mathrm{C}(5)-\mathrm{O}(5)$	108.1 (3)	108.8 (2)
P--C(5)-C(4)	101.9 (3)	103.5 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.4 (4)	114.9 (3)
$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(5)$	96.4 (2)	96.4 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.4 (4)	107.0 (4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	108.5 (4)	107.5 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	$110 \cdot 4$ (4)	109.1 (3)

Table 4. Bond lengths (\AA), valency angles $\left({ }^{\circ}\right)$ and hydrogen bonding

$\mathrm{P}-\mathrm{O}(1)$	1.491 (2)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.5$	1.520 (5)
$\mathrm{P}-\mathrm{C}(2) \quad 1$	1.829 (3)	$\mathrm{C}(5)-\mathrm{O}(5) \quad 1.407$	1.407 (4)
$\mathrm{P}-\mathrm{C}(5) \quad 1.85$	1.859 (4)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.388$	$1 \cdot 388$ (5)
$\mathrm{P}-\mathrm{C}(11) \quad 1$	1.794 (4)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.38$	1.383 (6)
$\mathrm{C}(1)-\mathrm{O}(2) \quad 1$	1.409 (5)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1.36$	1.369 (7)
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$	1.515 (5)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.37$	1.371 (5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.534 (6)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1.387$	1.387 (6)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$	1.540 (5)	$\mathrm{C}(16)-\mathrm{C}(11) \quad 1.38$	1.381 (6)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(2)$	114.5 (1)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	108.0 (3)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(5)$	114.0 (1)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	114.9 (3)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(11)$	111.6 (1)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.0 (3)
$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(5)$	96.4 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	107.5 (3)
$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(11)$	$110 \cdot 1$ (1)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	109.1 (3)
$\mathrm{C}(5)-\mathrm{P}-\mathrm{C}(11)$	109.2 (2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	(13) 119.9 (4)
$\mathrm{P}-\mathrm{C}(2)-\mathrm{C}(1)$	112.6 (2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	(14) 120.3(3)
$\mathrm{P}-\mathrm{C}(2)-\mathrm{C}(3)$	104.1 (2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	(15) 120.5(4)
$\mathrm{P}-\mathrm{C}(5)-\mathrm{O}(5)$	108.8 (2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	(16) 119.6 (4)
$\mathrm{P} \cdot \mathrm{C}(5)-\mathrm{C}(4)$	$103 \cdot 5$ (2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	(11) 120.4 (3)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$) 122.2 (3)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	(12) $119.2(4)$
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$) 118.6 (2)		
$\mathrm{O}(1) \cdots \mathrm{H}(\mathrm{O} 2)$	1.85 (4)	$\mathrm{H}(\mathrm{O} 2)-\mathrm{O}(2)-\mathrm{C}(1)$	108(4)
$\mathrm{O}(1) \cdots \mathrm{H}(\mathrm{O} 5)$	1.79 (4)	$\mathrm{H}(\mathrm{O} 5)-\mathrm{O}(5)-\mathrm{C}(5)$	114(2)
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	2.74 (1)	$\mathrm{P}-\mathrm{O}(1) \cdots \mathrm{H}(\mathrm{O} 2)$	142 (1)
$\mathrm{O}(1) \cdots \mathrm{O}(5)$	2.74 (1)	$\mathrm{P}-\mathrm{O}(1) \cdots \mathrm{H}(\mathrm{O} 5)$	123 (1)
		$\mathrm{H}(\mathrm{O} 2) \cdots \mathrm{O}(1) \cdots \mathrm{H}$ ((O)

account (Table 3). However, surprisingly high differences in the phospholane ring conformation are visible (Fig. 1). In (I) the ring adopts a nearly ideal half-chair conformation with a twofold axis through the P atom and asymmetry parameters (Duax \& Norton, 1975) $\Delta C_{2}^{1}=0.5(3), \Delta C_{s}^{3}=19.0(3)$ and $\bar{\varphi}=$ 30.7 (3) ${ }^{\circ}$, whereas in (II) the phospholane ring has a $C(3)$ sofa conformation with $\Delta C_{\mathrm{s}}^{3}=1.9(4), \Delta C_{2}^{5}=$ 20.4 (3) and $\bar{\varphi}=27.4$ (4) ${ }^{\circ}$. The differences in conformations probably result from the different positions of the substituents, especially those participating in hydrogen bonding.

Molecules of (I) are linked into 'bands' along [010] by hydrogen bonds. Each molecule is connected to two others having opposite configurations (Fig. 2). The

Fig. 2. Projection of the structure along $|001|$, showing the packing of molecules and the hydrogen-bonding system.
band width is equal to a_{0} while the length of a recurrent fragment is b_{l}. The $\mathrm{O} \cdots \mathrm{O}$ hydrogen-bond distances are both 2.74 (1) \AA. This value is slightly higher than those observed in other phosphine oxides containing a hydroxy group. The distances are: $2.70 \AA$ in (II) (GG, $1980 a$) and in both independent molecules of methyl (1-hydroxy-1-phenylethyl)phenylphosphinate (Glówka \& Galdecki, 1980), and $2.72 \AA$ in 4-hydroxy-1-phenyl-2-phospholene 1 -oxide (GG, 1980c). In structures containing a carboxyl group as well as a phosphoryl group, O \cdots O hydrogen-bond distances should be, and indeed are, shorter. Their mean value is $2.57 \AA$ (Głowka, 1977). Such a shortening is also observed if the hydroxyl group is bonded to an $s p^{2} \mathrm{C}$ atom, as in

Fig. 3. Configuration of the molecule and numbering system.

3-hydroxy-2-phospholenes. The distances 2.59 and $2.61 \AA$ have been found respectively by Washecheck, Helm, Purdum \& Berlin (1974) and GG (1980b). It appears that the acidity of the hydroxyl H atom is the most important factor affecting both the hydrogenbond distance and its strength. Table 4 shows the hydrogen-bonding geometry for (I).

The same configurations at P and $C(2)$ and the opposite configuration at $\mathrm{C}(5)$ have been suggested (Musierowicz, Waszkuć \& Krawczyk, 1979) and confirmed in this study (Fig. 3).

We are greatly indebted to Dr H. W. Krawczyk for pointing out the interesting features of this material and for providing the crystals. The research was supported by project MR.I-9 from the Polish Academy of Sciences.

References

Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, pp. 16-22. New York: Plenum.

Galdecki, Z. \& Geówka, M. L. (1980a). Acta Cryst. B36, 2191-2193.
Galdecki, Z. \& Gıówka, M. L. (1980b). Acta Cryst. B36, 2188-2190.
Galdecki, Z. \& Glówka, M. L. (1980c). Acta Cryst. B36, 1495-1497.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Gıówka, M. L. (1977). Thesis, Technical Univ. of Łódź.
Glówka, M. L. \& Galdecki, Z. (1980). Acta Cryst. B36, 2312-2315.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-203. Birmingham: Kynoch Press.
Musierowicz, S., Waszkuć, W. T. \& Krawczyk, H. W. (1980). Phosphorus Sulfur. In the press.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Takayanagi, H., Seo, K., Yamashita, M., Yoshida, H., Ogata, T. \& Inokawa, S. (1978). Carbohydr. Res. 63, 105-113.
Washecheck, D. M., Helm, D., Purdum, W. R. \& Berlin, K. D. (1974). J. Org. Chem. 39, 3305-3307.

Yamashita, M., Nakatsukasa, Y., Yoshikane, M., Yoshida, H., Ogata, T. \& Inokawa, S. (1977). Carbohydr. Res. 59, C12-C14.

Structure of 2-(4' $\mathbf{4}^{\mathbf{\prime}}$ Chloro-2' ${ }^{\prime}$-hydroxybenzoyl)benzoic Acid

By Zofia Skrzat
Institute of Chemistry, N. Copernicus University, ul. Gagarina 7, 87-100 Toruń, Poland

(Received 30 April 1980; accepted 9 July 1980)

Abstract

C}_{14} \mathrm{H}_{9} \mathrm{ClO}_{4}, M_{r}=276 \cdot 7\), monoclinic, $P 2_{1} / c$, $a=10.838$ (3), $b=15.205$ (3), $c=7.347$ (1) $\AA, \beta=$ $91.18(1)^{\circ}, V=1210.46 \AA^{3}, D_{x}=1.52, D_{m}=1.50$ $\mathrm{Mg} \mathrm{m}^{-3}, Z=4, F(000)=568$. The structure was solved by the heavy-atom method and refined by least-squares calculations to $R=0.064$ for 622 visually estimated reflexions. The crystal structure consists of centrosymmetric dimers linked by hydrogen bonds [$2.627(13) \AA$] between the carboxyl groups.

Introduction. This work forms part of the studies on the structures of substituted 2-aroylbenzoic acids. Crystals of the title compound were synthesized and kindly supplied by Professor J. Gronowska of the Organic Chemistry Department of N. Copernicus University.

Cell dimensions were obtained from rotation and Weissenberg photographs and were confirmed by measurements on a Syntex 21 diffractometer. From

[^1]systematic absences the space group was determined as $P 2_{1} / c$. Intensities of 623 reflexions were collected photographically with the equi-inclination Weissenberg technique about the c axis (zones $h k 0-h k 5$), and about the a axis (zones $0 k l-1 k l$), using Ni-filtered Cu $K a$ radiation. Intensities were corrected for Lorentz and polarization factors and for spot shape, but not for absorption.

The structure was solved by the heavy-atom method. The phases for the first Fourier synthesis were based on the structure factor calculation ($R=0.568$) from the position of the Cl atom. All non-hydrogen atoms were then located in two successive Fourier syntheses ($R=$ 0.252). Full-matrix least-squares refinements with isotropic and then anisotropic thermal parameters reduced R from 0.252 to 0.073 . At this stage, seven of the nine H atoms were located from a difference Fourier map. The H atoms were given the isotropic © 1980 International Union of Crystallography

[^1]: 0567-7408/80/112812-03\$01.00

